Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
نویسندگان
چکیده مقاله:
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with the greatest accuracy. The model presented in this paper is based on the combination of kernels and support vector regression. Support vector regression is highly capable of solving function estimation problems by using its kernels, but kernels’ parameters need to be adjusted. First we have preprocessing phase which includes normalizing data and separating data for testing and training. In proposed model, ten different kernels were used. Five kernels were selected as the best kernels by trial and error and these kernels are applied to data. There may be only a few of the kernels that are useful for the problem, and we are not aware of which kernels are useful for our problem so kernel outputs aggregate by applying a coefficient. This combination creates a new secondary space. The output is given to support vector regression to construct a model that predicts values exactly ɛ accurate, which means the predicted values do not deviate more than ɛ from the original data. This model predicts values by using a leave one out model. Each kernel has parameters that need to be set to optimum values in order to get the best results. Hence in the proposed model, the kernel parameters and their weights are learned by the Gray Wolf Optimizer. This optimizer has been able to provide appropriate answers to many problems, especially challenging problems and has a superior ability to solve the high-dimension problems. By running program in consecutive iterations and examining the different values of the parameters, the optimizer learns the best of them which prediction error has been reduced, and finally returns their best value. The proposed model is implemented on five standard time series and compared to other method, test based on the RMSE criterion for DJ time series, improved by 1.58 point, Radio time series, improved by 0.178 point, and Sunspot time series, improved by 1.709 point. Finally, we analyzed the results, Statistical evaluation by Wilcoxon Signed-Rank Test where the p value is very low compared to the proposed method and CNN-FCM, AR_ model per scale, Multiresolution AR model and ANN methods, slightly lower for Wavelet-HFCM and ANFIS methods and slightly lower than one for SAE-FCM method and at the end provide a relation to find the window size in the model by obtaining the average of peak differences, valley differences, and consecutive peak and valley differences for the actual values of the training data in exchange for their sequence number in time series.
منابع مشابه
Localized support vector regression for time series prediction
Time series prediction, especially financial time series prediction, is a challenging task in machine learning. In this issue, the data are usually non-stationary and volatile in nature. Because of its good generalization power, the support vector regression (SVR) has been widely applied in this application. The standard SVR employs a fixed -tube to tolerate noise and adopts the ‘p-norm (p 1⁄4 ...
متن کاملMultiple Kernel Learning for Support Vector Regression ∗
Kernel support vector (SV) regression has successfully been used for prediction of nonlinear and complicated data. However, like other kernel methods such as support vector machine (SVM) classification, the quality of SV regression depends on proper choice of kernel functions and their parameters. Kernel selection for model selection is conventionally performed through repeated cross validation...
متن کاملOptimal Kernel and Wavelet Coefficients to Support Vector Regression Model and Wavelet Neural Network for Time Series Rainfall Prediction
Fault Tolerance: A Model-Theoretic Approach to Fault Tolerance and Fault Compensation without Error Correction Leo Marcus (2013). Innovations and Approaches for Resilient and Adaptive Systems (pp. 57-67). www.igi-global.com/chapter/abstract-fault-tolerance/68943?camid=4v1a
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملThe Impact of Preprocessing on Support Vector Regression and Neural Networks in Time Series Prediction
Support Vector Regression (SVR) and Neural Networks (NN) have been successfully applied to forecasting and time series prediction. While conventional statistical methods require specific data preprocessing prior to the forecasting step both, SVR as well as NN need less efforts for the respective tasks due to their theoretical properties. On the other hand, it is known that preprocessing affects...
متن کاملDiscrimination of time series based on kernel method
Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 19 شماره 1
صفحات 0- 0
تاریخ انتشار 2022-05
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023